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N A T I O N A L  AEl?ONAUTIC S AND S P A C E  ADMINISTRATION 

T E C H N I C A L  N O T E  D-1919 

A C O N T R I B U T I O N  TO T H E  T H E O R Y  

OF P R E S S U R E  S T A B I L I Z E D  S T R U C T U R E S  

BY 

A. C .  Kyser  

SUMMARY 

A large-deformation analysis is presented for  a n  element of a flexible 
inflatable plate consisting of an  a r r a y  of contiguous tubes.  The element is 
represented by a t ransversely- loaded pressurized cylindrical  chamber of 
indefinite length having two flat s ides  connected by flexible but inextensible 
membranes.  The behavior of the cylindrical  element is described for  the 
complete range of deformation for  the case  of lateral compression, shear ,  
o r  rolling loads, and a method is descr ibed for  obtaining a graphical solu- 
tion for  the shape of the c r o s s  section under any given combination of loads. 
It was found that under cer ta in  conditions la rge  compressive deformations 
give r i s e  to  geometr ical  instabilities, o r  conditions of negative spring ra te .  

I. INTRODUCTION 

The load-vs-deformation behavior of inflatable structures i s  a subject 
that has  received considerable attention in recent  years .  
special  irr,portance in the design of light-weight deployable s t ruc tures  for  
space applications. 
special  emphasis  given to a theory for  deflections of a type of inflatable 
plate known a s  "Airmat," which has  been developed by the Coodyear Air-  
craf t  Corporation. 
having flexible skins connected together by a co re  of closely- spaced "drop 
cords." 
plate st iffness.  
type of s t ruc ture  a r e  t reated in References 2 and 3 .  

This subject has  

In Reference 1 this general  problem is discussed with 

The Airmat  construction consis ts  of a flexible sandwich 

The sandwich-core chamber i s  p ressur ized  to  produce the des i red  
The problems of static deflection and of vibration of this  
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In cer ta in  applications for  expandable pressure-  stabilized plates,  the 
presence o'f closely- spaced drop cords  m a y  be  undesirable because of re- 
quirements  for  internal  space,  foldability, o r  minimum weight. F o r  such 
applications, the requirements  may  dictate , the use of an  al ternate  con- 
struction for  inflatable plates. 
a r r a y  of paral le l  contiguous cylindrical  tubes such a s  that shown in Fig-  
u re  1. 
Such a s t ruc ture  will be anisotropic in  the sense  that i t s  load-vs-deforma- 
tion charac te r i s t ics  (up to the buckling load) along the direction of the cyl- 
inders  will depend pr imar i ly  on the propert ies  of the mater ia l s  of which the 
construction is made,  whereas  the res i s tance  to deformation a c r o s s  the 
tubes will depend pr imar i ly  on the p re s su re  and the tube geometry. 

One possible configuration consis ts  of a n  

This  type of plate s t ruc ture  was discussed briefly in  Reference 1. 

The subject of the present  paper is a fundamental investigation of the 
basic  mechanism by which an  inflatable s t ruc ture  of this  type t r ansmi t s  
load a c r o s s  the a r r a y  of tubes.  The analysis  has  been res t r ic ted  to a sin- 
gle idealized element of the a r r a y ,  consisting of an  indefinitely long cylin- 
dr ica l  chamber made f rom completely flexible but inextensible material. 

The deformations of a s t ruc ture  of this  type take place without chang- 
ing the load-carrying abil i ty of the materials which make up the s t ructure .  
Thus, the usable  range of deformations is not limited to small deflections 
in the usual sense.  Because of the importance associated with developing 
an  understanding of the non-linear large-deformation behavior of th i s  type 
of inflatable s t ructure ,  the analysis was made  rigorously,  without r e s o r t  to 
the limiting assumptions of smal l  deflection the6ry.  The resu l t s  which a r e  
presented a r e ,  therefore ,  valid for  the en t i re  range of possible deforma- 
tions. 
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11. ANALYSIS 

A. Description of the Problem 

The inflatable s t ructural  element under consideration he re  i s  a p r e s -  
surized cylinder of indefinite length having a c r o s s  section a s  shown in Fig- 
ure  2.  The cylinder i s  constructed with two flat, rigid walls simulating the 
webs and the symmetry  conditions imposed by the adjoining elements,  con- 
nected together a t  their  edges by flexible membranes  representing the cover 
of the plate-l ike s t ructure .  Under internal pressure ,  the c ross  section as- 
sumes  a p re fe r r ed  shape and the cylinder exhibits stiffness against  loads 
which would change the relative positions of the webs, or f lats.  

Deformations considered he re  a r e  those resulting f rom loads (either 

These loads represent  the 

In a l l  cases  the loads a r e  taken to  be u n i f o r d y  dis- 

normal or  shear  forces  or  rolling moments) applied to the webs in  direc-  
tions paral le l  to  the plane of the c ross  section. 
internal shear  forces ,  l a te ra l  compression, and bending moments of the 
plate-like s t ructure .  
tributed along the length of the cylinder, s o  that there  i s  no load t ransfer red  
between sections of the cylinder. The problem can therefore  be ' t reated with 
a two-dimensional analysis.  
not considered. 

The matter of end closures  for  the cylinder i s  

The assumption has been made that the internal p r e s s u r e  i s  both uni- 
fo rm throughout the cylinder, and invariant with changes in  geometry of the 
c r o s s  section. It has a l s o  been assumed that the flats of the cylinder a r e  of 
fixed widths and that the membranes a r e  inextensible, with no stiffness i n  
bending. 

F o r  the sake of simplicity, the discussion has been res t r ic ted  to those 
cases  for  which the flats a r e  equal in  width and the membranes  equal i n  a r c  
length. The a r c s  formed by the membranes  in  c r o s s  section a r e  c i rcular ,  
since the radius of curvature is determined by the p r e s s u r e  and tension, 
which a r e  uniform. In the initial geometry,  shown in Figure 2, these c i r -  
cular a r c s  have a common'center;  thus,  the undeformed cross sec t ionJs  
that of a right c i rcular  cylinder with f la ts  on opposite sides.  

It will be seen that any deformation under load must come about as a 
result of a reorienting of the various inextensible components, ra ther  than 
as a resu l t  of e las t ic  behavior of the components themselves.  In this regard,  
this s t ructural  element behaves in  a manner that is more  nearly representa-  
tive'of the kinematic mechanism than of the classical  "structure." 

B. Method of Analysis 

To establish the cross-sect ional  shape of the cylinder under any given 
loading condition, a se t  of equations of equilibrium can be writ ten for the 
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forces  acting on the flats.  
p r e s s u r e  load, a s  well a s  the undetermined tension loads in the membranes,  
which ac t  a t  undetermined angles to the f la ts .  The equations of equilibrium, 
together with the geometrical  requirements,  fo rm a set  of simultaneous, 
transcendental, algebraic equations which, i n  principle, can be solved to 
obtain the pa rame te r s  of the c r o s s -  section geometry. 

These forces  include the applied load and the 

In the simpler cases  these equations can be reduced algebraically to  
useful form,  which generally involves a geometrical  parameter  such a s  the 
central  angle of the membrane a r c .  
reduction has been found, and the application of the equations i s  l imited to 
numerical  evaluation for specific cases .  

In the more  complex cases  no such 

In ail cases ,  however, i t  is a simple matter  to establish the relative 
positions of the centers  of curvature of the two a r c s ,  provided the loads on 
either flat a r e  known. Once the centers  of curvature a r e  established, i t  is 
possible to establish loci of position for  the four co rne r s  of the c r o s s  sec-  
tion on which these co rne r s  must lie. The desired solution for the c r o s s  
section shape can be obtained easily by graphical i teration on the plots of 
the loci. 

The details  of the analysis for the various types of deformation a r e  
presented in  the Appendix. 
given in'the following section. 

A summary  of the resul ts  of the analysis i s  

C. 

(1) Deformation Under Lateral  Compression Loads: The c ross -  

Load- vs - Deformation Behavior 

section geometry for deformation under ' lateral  compression load i s  shown 
in Figure 3 .  
the membranes  increases  and the membrane tension dec reases  with in- 
creasing load. 
normal to the load direction by a n  amount which is proportional to the load. 
As in  all cases  considered in  this paper,  the a r c  length of the membrane 
remains invariant. 
c r o s s  section for any load. 

The nature of this deformation i s  such that the curvature of 

The centers  of curvature a r e  spread apart  in  the direction 

It i s  this condition which establishes the height of the 

A se t  of curves of normalized compression load-vs-deformation for  
The nor- severa l  ra t ios  of a r c  length to flat width a r e  shown in Figure 4. 

malized spring r a t e  is shown by the curve s'et in  Figure 5, for  which the 
absc i s sa  i s  the central  half-angle of the membrane a r c .  F o r  deformations 
for which this angle tends to  become l a r g e r  than 900, two cases  a r e  of in- 
te res t .  
a restr ic t ibn on the deformed c r o s s  section such that no portion of the me'm- 
brane can extend outside the region between the planes of the flats.  In this 
ca se  the membranes  of adjacent chambers will converge to produce a n  ap- 
parent widening of the common .flat, along with a n  accompanying shortening 
of the effective a r c  lengths of the membranes .  

If the cylinder is a n  element of a multicell s t ructure ,  there  may be 

This mode of deformation i s  
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such that the central  half-angle becomes fixed at  90'. 
sion spring r a t e  is dependent only on the p r e s s u r e  and the central  angle, the 
cylinder then behaves like a l inear spring (under the assumption of constant 
pressure) .  
tion curves of Figure 4. 

Since the compres-  

This effect i s  shown by the dotted portion of the load-vs-deforma- 

If there  a r e  no external res t r ic t ions on the shape of the c r o s s  section, 
the central  angle will continue to  inc rease  with increasing load, so that the 
membrane a r c  i s  g rea te r  than a semicircle .  As the deformation i s  in- 
creased,  the spring r a t e  continues to dec rease  until a point i s  reached a t  
which the spring r a t e  curve goes through zero,  which i s  to say that the 
ability of the cylinder to support compression loads i s  a t  a maximum, and 
fur ther  deformation will occur without i nc rease  of load. The zero-  spring- 
r a t e  geometry is diagrammed i n  Figure 6. 
angle for this condition is 160'. This phenomenon reflects a 'igeometrical 
instability," 'o r  a condition in which the instability of the s t ructure  resu l t s  
f r o m  i t s  geometrical  arrangement  alone, ra ther  f rom a combination of 
geometry and mater ia l  propert ies .  

The value of the central  half- 

( 2 )  Deformation Under Shear Loads: The conditions necessary for 
producing a pure  shear  deformation of the cylinder a r e  shown in Figure 7.  
If the shea r  loads a r e  applied i n  the planes of the flats, a s  shown, a n  ex- 
ternally-applied righting moment i s  nkcessary for equilibrium. 
ing moment has the effect of shifting the shearing-load planes of action to  
the mid-plane of the cylinder. 
e t ry  of the c r o s s  s e c t i o n i s  to  cause the centers  of curvature to be shifted 
apart  in  a direction that i s  perpendicular to the load by a n  amount that is 
proportional to  the load. The membrane tension increases  with increasing 
shear  load. It can be shown that the initial shea r  behavior of the cylinder 
i s  the s a m e  as that of a rectangular shea r  pad having'the height of the cyl- 
inder, the width of the flat ,  and a shear  modulus of elasticity equal to the 
internal p r e s  sure .  

This right- 

The effect of the shearing ioad on the geom- 

(3) Deformation Under Rolling,-Moment Load: The deformation of 
the c r o s s  section under a la te ra l  rolling m o m k t  applied to the flats is 
shown i n  F igu re  8. 
but are ,shif ted away f rom the original position with respect  to the webs. 
The amount of this shift i s  such that the difference between the squares  of 
the rad i i  is proportional to  the applied moment. 

In this case  the centers  of curvature r ema in  coincident, 

An analytical expression has  not been found for  this ca se  to allow the 
c r o s s -  section pa rame te r s  to be computed explicitly as a function of lozd. 
A graphical solution has been worked out, however, for  obtaining a load- 
vs-deformatian curve for  any given initial geometry.  
in  Figure 
the direction of th'e plane of sy?inmetry, and establishing loci of position for  
the co rne r s  of the c r o s s  section. These loci a r e  mi r ro r - image  hyperbolic. 
spirqls  about the center of curvature.  

The. method, as shown 
9 ,  consists of fixing the position of the center of curvature and 

Once the loci a r e  established, the 
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rolling moment for  any given rol l  position of the plate can be determined 
graphically by measuring the radi i  of curvature .  

( 4 )  Deformation Under Combined Loads: The effect on the c ros s  
section of loads having compression, shear ,  and rolling components is such 
that the total shift of the centers  of curvature  is the same as that which 
would be computed by adding the shifts caused by the th ree  components taken 
individually. 
mined directly f rom the loads.  

Thus, the pat tern for  the centers  of curvature  can be de te r -  
F igure  1 0  shows a deformation of this  type. 

To determine the c ross -sec t ion  shape analytically requi res ,  in the 
general  case,  solution of five simultaneous transcendental  equations with 
five unknowns. As in the case  of the rolling-moment load, however, the 
general  problem can be solved by a graphical approach involving loci of po- 
sition for  the corners  of the c ros s  section about the "fixed" pat tern of cen- 
t e r s .  In this case  the solution involves a graphical i terat ion around the dia- 
gram,  as shown in  Figure 11. 
Appendix. 

The procedure is described in detail  in  the 

The special  case  of combined shear  and compression is of in te res t  be- 
cause of i t s  simplicity. 
sion load on the shearing behavior of the cylinder is the same  as the effect of 
a decrease  in  the width of the flat  by a n  amount equal to the spread of the 
centers  due to  the compression load; in  other words,  the shear  behavior is 
determined by the membrane geometry independently of the width of the flat .  
If the compression-induced spread of the centers  is equal to  the width of the 
flat ,  the shear  st iffness is zero,  and for g rea t e r  compression loads the 
shear  spring r a t e  of the cylinder becomes negative. This condition ref lects ,  
as in  the case  of a l a t e ra l  normal  load discussed above, a fo rm of geometr i -  
cal  instability, i. e . ,  one which is independent of the propert ies  of mater ia l s  
used in  the construction of the cylinder. 

It can be shown that the effect of a fixed compres-  
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111. EXPERIMENT 

In order  to verify the theoretical work and to observe the l a rge -  
deformation behavior of a physical model, a s e r i e s  of experiments were 
undertaken. In these experiments,  a partially flexible cylinder was p r e s -  
sur ized with water a t  a constant p re s su re  level and loaded with lead 
weights. Deformations were measured with dial-indicator gages.  

The model i s  shown in  F igure  12 and the experimental  setup in Fig-  
ure  13. The cylinder was fabricated by winding dry  f iberglass  roving 
over a mandrel  on which were mounted two 3116-inch thick aluminum 
plates,  one on each side. After completion of the winding, the f ibers  
were bonded between these inner plates and a se t  of outer plates.  The 
f iberglass  was left unbonded in  the "membrane" region to re ta in  mini- 
mum bending stiffness. A pressure- t ight  bladder was fabricated by mak- 
ing a tube f rom a sheet of natural rubber about .020 inch thick and binding 
the ends to rubber  stoppers. The end-cap load was accounted for  by sup- 
porting the bladder with a n  oversized knit bag which was s t re tched longi- 
tudinally to minimize circumferential stiffness. 

To eliminate the effects of the end res t ra in ts ,  the upper plates  were 
segmented three  inches f rom each end of the cylinder. The separa te  end 
pieces  were  adjustable to allow aligning with the center section for  each 
new load, and held in position with bolts f rom the base plate, as shown in 
the photograph. 

The cylinder was pressur ized  hydrostatically f rom a standpipe about 
14 f t .  high. An overflow near the upper end of the standpipe allowed the 
p r e s s u r e  to be maintained at  a constant level. Volume-change measure-  
ments were  made by collecting and weighing the water discharged at  the 
overflow. The internal p re s su re  for these  t e s t s  was 6.2 psi. 

Compression loads were applied in the form of weights placed on a 
stiff beam supported by the upper plate, a s  shown in Figure 13. It was 
found that seemingly minor deviations f rom uniformity in the winding r e -  
sulted in  a somewhat e r r a t i c  initial behavior under compression loads. 
By applying a sufficiently l a rge  t a r e  load, however, i t  was found that the 
behavior of the cylinder for higher loads was reasonably close to the the- 
oret ical  predictions. The deflection was measured with a dial-indicator 
gage a t  th ree  points on the beam. 

The resu l t s  of the compression load t e s t  a r e  shown in F igures  14 
and 15. On these plots, the initial tare- load values have been se t  up to  l ie 
on the theoret ical  curve, with the other values in cor rec t  position relative 
to  the t a r e  values. 

In the shear  tests,  the cylinder was loaded through a br idle  such 
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that the load was applied in  the horizontal mid-plane between the upper and 
lower plates.  
loading apparatus on the upper plate s o  that a pure  shear  deformation was 
obtained. The shear  offset e w a s  measured  with dial gages near the ends 
of the cylinder. 

An upward force  was used to counteract the weight of the 

F igure  16 shows the resul ts  of the shear  tes t .  

The rol l  t e s t  was s e t  up with the cylinder loaded by a force  couple 
The rol l  through a tors ion bar  clamped to  the top plate of the cylinder. 

angle 8 was measured as deflection of two points on a rod attached to the 
tors ion bar .  
for this f igure was determined by graphical construction. 

The resul ts  a r e  shown in  F igure  17. The theoretical  curve 

One case  of deformation under a combined load was included in the 
tes t  program. 
compression, shear ,  and rolling loads,  and measurements  were  made of 
the deformation. 
using the graphical i teration method descr ibed in  the Appendix. A compar-  
ison of the measured  and theoretically-determined deformed c ross  sections 
is shown in  Figure 18. 

F o r  this case,  the cylinder was loaded simultaneously with 

A theoretical  prediction of the deformation was obtained 

Astro Research  Corporation 
Santa Barbara,  California 
September 24, 1962 
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APPENDIX 

A. Initial Geometry 

The s t ruc tura l  element under consideration is  a pressurized cylinder 
of indefinite length having two flat rigid s ides  which a r e  connected together 
at  their  edges by flexible membranes ,  as shown in F igure  2. The widths of 
the flat s ides  a r e  taken to be  equal, as a r e  the a r c  lengths of the membranes.  
Loads a re  applied to  the cylinder through the flats, in the form. of dis t r ib-  
uted forces  and rolling moments tending to dis tor t  the c r o s s  section. It i s  
assumed that all loads ac t  in  directions paral le l  to the plane of the c r o s s  
section, and that a l l  sections along the length of the cylinder a r e  loaded 
equally s o  that t he re  is no load t ransfer red  between sections. 
assumed that the flats a re  rigid and that the membranes  a re  inextensible, 
but perfectly flexible. 

It is fur ther  

To establ ish the shape of the unloaded cylinder we can wr i te  the con- 
ditions for  equilibrium of the lower plate as shown in F igure  2. It will be 
seen  that for  ze ro  load the fo rces  on a unit length of the cylinder must  be 
such that 

2T cos01 = pw , 
0 0 

where p is the internal  p re s su re ,  w and OL are  as shown in F igure  1,  and 
the subscr ipt  o stands f o r  the no-load condition. The tension To i s  the 
circumferential-direction tension force  ca r r i ed  by the membrane  per  unit 
length of the cylinder.  With elementary cylinder theory  i t  can be shown that 

T = pPo . 
0 

Substitution of equation (A-2)  into equation (A- 1)  gives 

2P0 cosDlo = w , 

( A - 2 )  

( A - 3 )  

which is to  s ay  that the centers  of curvature  of the flexible s ides  coincide; 
i. e. , equation (A-3)  establishes "vertical" alignment of the centers ,  while 
"horizontal" alignment is required by symmetry.  The unloaded cylinder 
therefore  has  the shape of a c i rcu lar  cylinder with flats on opposite sides.  
To establ ish the distance ho between the flats, given the a r c  length s and 
the width w , note that 

(A-4)  

Thus,  f rom equation (A-3) ,  
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Fur ther ,  

s o = 2 p  s ina 0 = - CL sina 0 . h 
0 

0 

Dividing equation (A-5)  by equation (A-3) gives 

- -  - t ana  , hO 

W 0 

and squaring and adding gives 

(A-7) 

Solving equations ( A - 7 )  and (A-8) to eliminate Qo , it is seen  that the con- 
dition for  ho is 

S 2 = [arctan;] 2 , 2 2 
w t ho 

This equation is readi ly  solved numerical ly  by i terat ion o r  by any other 
method for  finding the roots  of a transcendental equation. 
is to  solve equation(A-5) i te ra t ive lyfor the  pa rame te r  CLo 
be used in equation ( A - 6 )  to give ho . 

Another approach 
, which can then 

B. Deformation Under Compression Loads 

If the  cylinder is loaded symmetr ical ly  with a compression force,  the  
plates  will be displaced toward the center  plane. 
fixed, the curva ture  of the membranes  must  increase.  
will, therefore ,  a s sume  a shape like that shown in F igu re  3. 
equilibrium requirements  a r e  given by 

Since the a r c  lengths a r e  
The c r o s s  section 

The new 

2T cos& + F = pw 

o r  
F 

2P cosa = w - - 
P 

The geometry  of the c ros s  section is such that 

2pcosCL = w - a . 
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Therefor  e, 
F 
P 

a = - '  (B-3 )  

that i s ,  
tional to the compressive load. 

the spacing between the centers  of curvature  is direct ly  propor-  

Given the plate width, the arc length, and the load, the angle CL can 
be determined readily.  Noting that 2pCY = s , it i s  convenient to rewr i te  
equation ( B - 2 )  as 

COSCY W - a  
CY s 

- = -  

To find the deformation-vs-load charac te r i s t ic  (i. e. , to find h as  a 
function of F) , the following geometr ical  relations can  be used: 

Combining equation ( B - 5 )  with equation (B-2) t o  eliminate CY gives 

2 

2 2 
s 

h t (w -,a) 

The spring r a t e  with which the cylinder resists incremental  deforma- 

tion by compress ive  loads is [- 2) . To compute this  it i s  convenient to  

pe r fo rm the differentiation with respect  to the parameter  OL : 

F r o m  equations (B-3)  and (B-4) 

1 S 
F = p[w - COSCY , 

which gives 

d F  Q! sins t COSQ! 

- dCY = p s [  
CY 2 

Also, f r o m  equation (B-5) 

= COSCY - sins 
2 

a! da! 
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Thus 

3 cos(Y t (Y sins (-E) = P [  sins - 01 cosa (B-10) 

This function can be expressed in  t e r m s  of h and F by the use  of equa- 
tions (B-3) ,  (B-4),  and (B-5):  

I 2D(w-a) t s h  (- 2) = P[ 2Ph - s ( w - a )  
(B-11) 

(- e) = P[f]  = P [ 5 ]  
0 

where 

2P = q- 
The spring r a t e  of the cylinder against  deformation f rom i t s  initial, 

no-load geometry can be obtained by setting a = 0 in equation (B-  11):  

0 

(B-12) 

The special  ca se  w = 0 represents  the condition for  a concentrated 
n 

0 2  line load on a flexible cylinder.  F o r  this  case,  of course,  01 = - , and 

h = 2 p  = -  , The init ial  spring rate is, f rom equation (B-12),  for  

this case :  

S 

0 0 n I 2  

Note the lack of dependence on diameter .  

Equation (B-10)  shows that the spring r a t e  in genera l  is determined 
only by the p r e s s u r e  and the angle 0 . An interesting resul t  of this  can 
be seen  f rom a consideration of a flexible cylinder compressed between 
two wide paral le l  plates,  representing the situation in a multiple-chambered 
plate-like s t ruc ture  compressed la teral ly  beyond the  point where two m e m -  
branes  joining at a web fo rm a finite angle. 

CY = - for  any compressed position of such a cylinder. Thus, f rom equation 

It is apparent that 
n 
2 

(B-10) 

(- 2) = P[5]  
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Thus, the compressed cylinder (with constant internal p re s su re )  behaves 
like a l inear  spring. 

A geometr ical  interpretation of equation (B-10) is given in F igure  19 
which shows the involute of a unit c i rc le .  Here the angle (Y is the angle 
swept by the tangent to the generating radius r , while Cp is the central  
angle swept out by the involute curve about the center of the unit c i rc le .  
The Cartesian coordinates of the involute a r e  

y = sina! - a! cosa 

x = cos& t & sinol 

Note that 
X cos& t 01 sina! 
Y sin& - a! cosol cot9 = - = 

Thus the spring r a t e  is  

(- z) = p cot9 

This  relation may be expressed in  t e r m s  of compliance: 

( -  g) = ; 1 tan9 

(B-  14) 

(B-15)  

(B-  

Note that the compliance, tanq , is numerically equal t o  the y value of 
the intersection of the line and the l ine (shown dashed) x = 1 . It is 
readily seen  that the compliance can change by a very  la rge  factor .  
deed, at the angle a t  which the involute curve c ros ses  the y axis the 
compliance becomes infinite (i. e. , the spring r a t e  is zero)  and thereaf ter  
is negative. This  occurs  a t  

In- 

- cot& = & = 2.  80 = 160' 

The geometry for  this  condition is shown in F igure  6 .  

A geometr ical  interpretation of the stiffness relation is shown in  
F igure  20. The origin 0 for  this  diagram is the center of curvature  of the 
flexible side of the cylinder, while the curve is the locus of the "corner"  
of the c ros s  section as & changes, with the  center of curvature  remaining 
stationary and the plate moving paral le l  to  its original position. The polar 
coordinates (L), (Y) of this  locus must  satisfy the equation 

S 
pa! = - 

2 

This equation descr ibes  a hyperbolic spiral .  I ts  Cartesian coordinates a r e  
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h y = 0 sins = - 
2 

w-a 
x = p cosol = - 2 

Now consider in the light of this  diagram the behavior of the cylinder 
under a compression load. If an  incremental  load A F  i s  added to the 
load F , the centers  of curvature  of the s ides  will move outward f rom the 

AF . Referred to the 
1 centerline of the cylinder a distance of - Aa = - - 

diagram of F igure  20,  th i s  distance is  a horizontal displacement of the cor -  

ner  by an amount -- AF in the direction of the origin. Accompanying this  

2 2 P  

2 P  1 

horizontal displacement is a ver t ica l  displacement of - Ah . Thus, the 

change in height p e r  unit of change in  load (i. e . ,  the compliance of the 
cylinder) is represented by the slope of the sp i ra l :  

2 

- Ah12 

2P 
A Y = -  Ax AF / = PI-%) 

o r  (B-18) 

where cp is the slope angle of the spiral .  It can be readi ly  verified that 
the slope of the sp i r a l  gives the same function cp((y . )  as the central  angle 
of the involute of the unit c i rc le .  

F igure  4 shows a set of curves  for  the normalized la te ra l  compres-  
sion load-vs-deflection for  severa l  values of the geometr ical  parameter  

"w and for  deformations ei ther  unrestrained o r  limited by adjoining ele- 
ments .  
curve at the point in  question. 

charac te r i s t ics  branch due to  r e s t r a in t s  coincides with the line - = 1 . 

The spring r a t e  for  any  par t icular  condition i s  the  slope of the 
The (y. = 90' contour where  the deformation 

F 
PW 

Figure  5 is a plot of normalized spring rate v s  the angle CY . F has  
been normalized by the  factor  pw and h h a s  been normalized by ho . 
The initial-condition contour is a l so  shown. 
ences, the init ial  spring rate has  a minimum near  Q0 = 60' 

F o r  these  normalizing re fer -  
. 

C. Deformation Under Shearing Loads 

The deformed shape of a cylinder subjected to  a shearing load is 'shown 
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in F igure  7. It can be seen  f rom this  diagram that, for  reasons of symme- 
t ry ,  

1 P1 = P2 = P 

An externally-applied righting moment is necessary  for  ro l l  equilibrium of 
the cylinder. 
upper and lower plates  be  equal. Thus, 

To maintain ant i -symmetry,  let the moments applied to the 

Qh 
2 

M = -  

This  moment h a s  the  value necessary  to shift the shearing loads t o  the  mid- 
plane of the cylinder. 

The condition for  equilibrium of ver t ica l  forces  on the lower plate is 
that 

T  COS^ t T C O S ~  = pw 1 1 2 2 

Recalling that 

T = p P ,  

we m a y  wr i te  th i s  as 

P cosa  1 t p cos& 2 = w (C-  3 )  

Thus, the horizontal displacement between the centers  of curvature ,  C O T -  

responding to  the distance a in  the compression case,  is zero.  

Equilibrium of the la te ra l  forces  on the lower plate demands that 

which is to  say  that 
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By comparing this expression with the requirements  of the geometry of the 
c ros s  section, it can be seen that 

Q 
P 

b = - ;  (C-  5) 

i. e . ,  the ver t ical  displacement between the centers  is proportional to  the 
shear  load. 

Adding the moments which tend to  rotate  the lower plate about i ts  
right-hand corner ,  we s e e  that 

Substitution of equations ( 2 )  and (5)  gives 

w bh 
p c o s a  = - -t - 2 2w 1 

Similarly 
w bh 

2 2 2w 
- - -  p cos& = 

Another basic  condition for  the c r o s s  section i s  given by t h  

PsinQ t P s i d l  = h 
1 

Finally, the condition f o r  fixed a r c  length yields: 

s = p (a1 -t 8,) = P ( a 2  -t 8,) = 2 0 0  

(C-7)  

geometry:  

(C-8)  

(C-9)  

This condition is m o r e  conveniently handled in t e r m s  of (5 . Substituting 
0 and Y for  and /3 in equations (C-3) ,  (C-4) ,  (C-6) ,  (C-8)  yields the 
following equations for  the c ros s  section: 

(C-10) S - cosu  COSY = w U 

(C-11) S - cos0 sin7 = b 
0 

(C-12) 8 - sin0 COSY = h 
0 

e 
S bh - sin0 sin? = - = 
U W 

(C-13) 

The fourth relation is redundant but is included for  convenience. 
e i s  the shear  offset. 

Here,  



F r o m  these  relations it can be seen  that 

h e 
W b 

b e tany = - = - 
W h 

tan0 - = - (C-14) 

(C-15) 

If equations (C-10) through (C-13) are squared and then added the  resul t  is 

(C-16) 

Equations (C-14) and (C-16) can be combined to eliminate 0 , in  o rde r  to  
obtain a relat ion for  h : 

2 
S 

2 2  
t e w2 t b2 t h 

(C-17) 

If it is des i red  to find h it is possible to solve equation (C-17) numerically. 
An al ternate  and possibly m o r e  expedient approach i s  to solve first for  the 
angle 0 . A convenient expression for  0 can be obtained by squaring and 
adding equations (C-10) and (C-11):  

- -  4x7 - cos0 
0 S 

This relation i s  readi ly  solved numerically by  i teration. 

The shea r  spring r a t e  can be determined f rom equation (C-15):  

Q = pw tan? 
Thus 

(C-18) 

Initially, cosy = cosy, = 1 . The init ial  shea r  spring rate is therefore  

(g) = PW 
0 

(C- 20) 

D. Deformation Under Rolling Loads 

Consider now the deformation of the cylinder under a rolling moment 



applied to  the plates.  
o r  compressive force the centers  of curvature  for  the membranes will co- 
incide. 
of the nature of that shown in Figure 8. 
ver t ical  forces  on the lower plate is 

It can be seen that in the absence of a net shearing 

The deformed cylinder will therefore  have a cross- section shape 
The condition for equilibrium of 

s s 8 - 
20 cos0 2 t - 201 cos0 1 = w cos- 2 

2 

Similarly,  the horizontal equilibrium is 

s s 8 
20 sin0 - - 20 sin0 = sin- 1 2 2 1 
- 

These relations can be squared and added together to eliminate 8 : 

Note that this  is the law of cosines for  the tr iangle defined by the center of 
curvature  and the plate. 

A second equation relating 01 and 0 2  can be obtained by taking 
moments about a section through the horizontal centerplane: 

p1 -+ p2 
(T2 - T I )  ( 2 ) = ' 

o r  

2M 
P = - (D-4)  

Equations (D-3)  and (D-4)  can be solved simultaneously for  01, and 0 2  a s  
functions of M . One scheme for  accomplishing this  numerically is to 
i te ra te  with the sys tem 



Here a value i s  assumed for  01 , and a value for  02 is computed f rom the 
f i r s t  equation. 
ond equation to  compute a n  improved value for  01 
the f i r s t  equation to recompute 0 2  , etc. Once the pa rame te r s  01 and 0 2  
a r e  calculated, the remaining dimensions of the c r o s s  section can be deter-  
mined immediately. 

These two values a r e  then used on the right side of the sec-  
, which is then used in 

A graphical method of solving this  problem i s  shown in F igu re  9 .  
this diagram the curves represent  the loci of the two co rne r s  of the lower 
plate for  a succession of deformed cross-sect ion shapes, a l l  plotted on the 
diagram with the centers  of curvature a t  the origin and the horizontal center- 
l ines coincident. The polar coordinates of any point on the locus a r e  ( p , O )  . 
Since all points along the curves have in  common the a r c  length - f rom the 2 
centerline, the curves must  satisfy the equation 

In 

S 

This is the equation of a hyperbolic spiral ,  a s  discussed in conjunction with 
Figure 20. 

The two loci of position for the co rne r s  a r e  therefore  mi r ro r - image  
Once these sp i ra l s  have been sp i ra l s  about the fixed center of curvature.  

established for any given initial geometry, a point on the curve M v s  
can be determined by connecting the two spirals  with a line of length w . 
The angle 8 can then be measured  directly, and the moment can be com- 
puted f rom equation (D-4); 

8 

i. e. , 

2 2M 
P2 - P I Z  = - 

P 

It is a lso  of interest  to note that if the position of the lower plate is 
retained a s  the coordinate basis  the la te ra l  shift of the center of curvature 
i s  proportional to  the moment. This can be established by taking moments 
about the right-hand corner  of the lower plate: 

T1 

o r  

Thus the 

An 

M cosa ' w = pw * - - W 

1 2 

w M  p cosa = - - -  
2 PW 1 (D-7) 

M 
PW 

la te ra l  shift of the center i s  - . 

expression f o r  the initial stiffness may be derived using the model 



of Figure 9. 
( symmetr ica l )  geometry,  a slight shift of the plate will produce equal 
changes in the x coordinates of the co rne r s  and equal but opposite changes 
in  the y coordinates. As a resul t  of such a shift of a n  amount Ax , the  

8 
plate will be tilted by a small angle - , where 

2 

It can be seen that for  small displacements f rom the initial 

2 W W 

But 

Thus 

From equation (D-6)  it can be seen that 

where Po is the init ial  radius  of curvature  and AP is  the change in p 
resulting f rom Ax . It can a l so  be seen f rom the diagram that 

Ap .= A x  cos (ao  - cpo) 
dx 

0 

where 

= a r c t a n ( 2 )  
0 

lf0 

Hence, the moment i s  re la ted to  A x  as follows: 

The init ial  st iffness of the cylinder is therefore  

(D-IO) 

(D-11) 

D- 12) 

Here Po and Do belong to the init ial  geometry.  This expression may be 



simplified by substituting tancp for  (2) . This gives 
0 

0 

or 

Since 

where 

0 1 (7) = 4 [ cotcp 0 t tan0 
0 

dx cotcp = - 
dY 

S 
y = p sin0 = - 20 sin0 

S x = p cos0 = - 20 cos0 

it can be  readily verified that 

cos0 t 0 sin0 
sin0 - 0 cos0 cotcp = 

(D-13) 

(D-14) 

This function was discussed in the compression-load section. 

E. Deformation Under Combined Loads 

F igu re  10 shows the c r o s s  section of the cylinder a s  deformed under 
an a r b i t r a r y  load having compressive,  shearing, and rolling components. 
F o r  the sake of convenience, a coordinate system has been chosen such that 
the lower plate remains fixed and the deflection of the upper plate i s  meas -  
ured relative to the lower plate. Fu r the rmore ,  the components of the load 
on the upper plate a r e  taken such that they r ema in  oriented rectangularly 
with the lower plate. 
in t e r m s  of the angles 01 , # , 8 can be writ ten readily in the manner 
used previously for the special  cases :  

The set  of equations which descr ibe the c r o s s  section 

w- a 
p1 cos01 =-  - - , a = F /  P 

1 2 pw 

w-a M 
2 2 PW 

p COSDL2 =-  t - (E-2)  

(E-3) 
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p1 t p2 cosflZ = w cos6 - a (E-4 )  

(E-5)  

Fur the rmore ,  the arc- length relation holds: 

If equations (E-6) a r e  substituted for  P i n  equations (E-1) through (E-5) ,  
the resul t  is a set  of five simultaneous equations with five unknows: “1 
a 2  81 82 8 . Solution of this  set will yield the dimensions of the c r o s s  
sect  ion. 

An al ternate  method of describing the c ros s -  section geometry is by 
the use  of angles  0 and y : 

With th i s  set of var iables  the  arc- length condition is somewhat m o r e  
easi ly  applied: 

2p1 u1 = 2 p 2 u 2  = s (E- 8) 

The equations defining the  geometry  of the c r o s s  section in  terms of the 
new variables  a re  as follows: 

w-a M P1 C O S ~  C O S ~  t p1 sin0 siny = - - -  
2 PW 1 1 1 1 (E-9)  

w-a M 
2 2 t P2 sin0 2 siny 2 = - t -  (E-10) p cos0 cosy 

2 PW 

W 
P 2 sin0 2 cosy2 - P1 sin0 1 cosy 1 = - 2 s ine (E-1 1) 

W P 2 sin02 siny 2 1  t p sin0 1 siny 1 = - - ( i -cose)  (E-12) 

W 
(E- 13) p2c0su 2 - p1 C O S 0  1 siny 1 = b - - 2 s ine 
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i 

Analytical solution of a set  of equations such a s  these i s  not a pract i -  
cal  r a t t e r .  Numerical solutions can be obtained by i teration using a digital 
computer. 
solved for  any given set  of the parameters  quite readily by a graphical  i t e r -  
ation method. 

The nature  of the problem is such that the sys tem can a l so  be 

This  method i s  i l lustrated in Figure 11. 

The graphical  solution depends f i r s t  on locating the two centers  of 
curvature  with respect  to  each other ,  
the loads F and ;2 a r e  known. Given the center  pattern,  then, it i s  pos- 
sible to construct for  each of the four co rne r s  of the c r o s s  section a locus 
which will include the co r rec t  position of the corner .  The loci for  the edges 
of the lower plate a r e  necessar i ly  ver t ica l  l ines ,  since the dis tances  
plcosO11 and p2cosCQ a r e  fixed by equations (E-1)  and (E-2) ,  and since the 
distance a is  by definition measured in  a direction paral le l  t o  the lower 
plate. It should be observed that the disp1acen;ent of the two centers  of 
curvature  is a direct  superposition of the shifts due to each of the th ree  
components of the load, taken separately.  
cal  separations,  a and b , are  both proportional to and in directions per-  
pendicular to  their  associated load components, and the la te ra l  displacement 
of the pat tern itself i s  proportional to  the moment. 

This  can be done at once provided 

Thus, the horizontal and ver t i -  

The loci for  the co rne r s  of the upper plate a r e  shown on the diagram 
as curves.  These  curves  have the property that every  point on them l i e s  a 
fixed dis tance f r o m  the ver t ica l  locus (of the lower plate) along a c i rcu lar  
a r c  centered on the predetermined center  of curvature. Thus, regard less  
of the position of the lower plate, the co rne r s  of the upper plate will l ie  on 
these loci. 

Once the loci a re  established the i terative solution m a y  proceed rap-  
idly using the conditions that the lower plate is horizontal and that the upper 
plate h a s  width w . The par t ia l  solution indicated in F igure  11 shows the 
i terat ive path: A position is  assumed for  the lower plate and the correspond- 
ing position f o r  the upper right-hand corner  by swinging a n  arc  about Cen- 
t e r  2. 
swinging an  a rc  of radius  w f rom Locus 2 to  Locus 1. This position is ex- 
trapolated to  the lower plate with a n  a r c  about Center 1 down to  the ver t ica l  
locus, thereby improving the  initial assumption. This  process  appears  to 
have the charac te r i s t ics  that it converges in one direction (i. e . ,  counter- 
clockwise in  the example) and diverges  in  the other.  

The tentative position of the upper left-hand corner  is found by 

Consider now the case  of combined shear  and compression for  which 
ant isymmetry is retained. In th i s  case 

= B2 = 0 - y  
1 

= o t y  
2 6, = 01 

(E-  14) 
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Equations (E-1)  through (E-5)  therefore  reduce to 

2p cos0 COSY = w - a 

2pcosU siny = b (E-15) 

= e  2M 2p sin0 sinv = - - 
P W 

In addition, we can wri te  

2p sin0 COSY = h 

Of these four relations any one can be considered redundant. 
h and 

Note that 
e a r e  the height and the shear  offset as used in the shear-load case.  

The restor ing moment M is  necessa ry  for  static equilibrium. Thus 

-2M = Q h t  F e  (E-16)  

The negative sign on the moment is necessary  because of the direction of 
rotation of M in F igure  9. 

A final reduction of the four (0,y) relations gives 

h e tanU = - = - 
w - a  b 

e b 
h 
- - -  - 

w - a  tan? = 

(E-18) 

These equations a r e  identical to those derived for  the pure shear  case  
except that (w - a )  he re  replaces  w . Thus, the shear  behavior of the 
cylinder under a compression load is  the s a m e  as that of an unloaded cylinder 
with the same  membrane  geometry. Note that the  shear  spring r a t e  is 

(E-19) 

If w=a the shear  spring r a t e  is zero,  and for  compression loads g rea t e r  
than F=pw the cylinder is unstable in  shear .  
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Figure  1. Transverse ly  Loaded Inflatable Multiweb Beam Structure.  

F igure  2 .  Initial Geometry of Cylindrical Element. 
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Figure  3. Lateral Compression Deformation. 
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Figure  4. Compression-Load vs Deformation Character is t ics .  
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Figure  5. Compression-Load Spring Rate. 
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Figure  6. Zero  Compression- Spring- Rat e Geometry. 

F igure  7.  Shear Deformation. 

F igure  8. Roll Deformation. 
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Figure  10 .  Combined Load Deformation. 
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F igu re  11. Graphical Solution fo r  Combined-Load Deformation. 
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Figure  12. Diagram of Experimental  Cylinder Model. 
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Theoretical  Curve 

Experimental  Point s : 

0 Load Increasing 
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Initial deflection a t  100 lb. a rb i t r a r i l y  
set  equal to theoretical .  
flections measured  relative to  this  one. 

All other  de- 

Deflection - Ah - in. 

F igure  14. Compression Deformation Experiment. 
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F igure  15. Compression Volume- Change Experiment. 
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F igure  16. Shear Deformation Experiment. 
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Figure 17. Roll Deformation Experiment. 
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Figure  18. Combined-Load Deformation Experiment.  
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Figure 20. Hyperbolic Spiral. 
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